

Spatially informed Aggregation of Orbiting Carbon Observatory measured XCO2 for Global Flux Inversion

Joaquim Teixeira, Hai Nguyen

Orbiting Carbon Observatory-2

- Orbiting Carbon Observatory-2
 (OCO-2) infers column averaged
 CO₂ (XCO₂) by measuring spectral
 radiance
- OCO-2's global measurements used in CO₂ flux inversion modelling

OCO-2 soundings week of 2015-10-11

Objective and Approach

- Aggregating level-2 OCO2 Data into 1°x1° blocks for flux inversion
- Localized Ordinary Block Kriging by orbit
- 4 Step process:
 - Estimate and remove latitudedependent trend
 - Define spatial field
 - Estimate local covariance
 - Block Krige

Detrending

- De-trend XCO₂ with respect to latitude using LOESS
- Outlier removal
- Covariance estimation and Kriging performed on detrended XCO_2

 XCO_2 for all sample orbit footprints and latitudedependent trend

Definition of Spatial Field

- Discretize orbit into degree boxes
- Define spatial field for each box with fixed radius
- Estimate spatial covariance of detrended XCO₂ within spatial field
- Block Krige over degree box

Spatial field for sample degree box

Empirical Covariance Estimation and Block Kriging

- Estimate covariance from empirical variogram of spatial field
- Assume variogram (γ) has exponential form:
 - Bin squared difference in XCO_2 value against distance for each retrieval
 - Fit exponential regression
- Covariance:

$$C(h) = C(0) - \gamma(h)$$

where h is the distance between two points

Empirical Covariance Estimation and Block Kriging (cont'd)

- Nugget Effect:
 - No nugget effect estimated
 - Individual retrieval uncertainties added separately to spatial covariance
- Estimate XCO_2 at 5 points across orbit
- Average mean estimate and uncertainty across 5 points

For all points s_i in a defined spatial field spatial covariance function C and matrix Σ , and kriging estimation points s_k

•
$$a_i = C(s_k, s_i) \Sigma^{-1}$$

•
$$Z(s_k) = \frac{1}{N} \sum_{i=1}^{N} a_i x_i'$$

•
$$x^* = LOESS(\overline{s_k}) + \frac{1}{5}\sum_{k=1}^{5}Z(s_k)$$

•
$$\widetilde{C}_i = \frac{1}{5} \sum_{k=1}^5 C(s_k, s_i)$$

• \tilde{C} = the vector of \tilde{C}_i for all s_i

•
$$\sigma_K = \frac{1}{25} \sum_{k=1}^{5} \sum_{k'=1}^{5} C(s_k, s_{k'})$$

•
$$\sigma^* = \sigma_K - \widetilde{C}^T \Sigma^{-1} \widetilde{C}$$

Comparison with 10 Second Average

- Global 2016 values compared
- Matched by nearest integer coordinate
- 90% of XCO2 Difference within +/-0.6ppm
- 99% of XCO2 Difference within +/-2ppm
- Mean difference: 0.0272 ppm
- Variance difference: 0.151 ppm

Spatial average – 10 second average

Spatial average – 10 second average CDF

Comparison with 10 Second Average

- Land/Ocean bias
- Mean land difference: -0.0564 ppm
- Mean ocean difference: 0.0475
 ppm

©2018 California Institute of Technology.
Government sponsorship
acknowledged.

